skip to main content


Search for: All records

Creators/Authors contains: "Lorandi, Francesca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. Since its inception, atom transfer radical polymerization (ATRP) has seen continuous evolution in terms of the design of the catalyst and reaction conditions; today, it is one of the most useful techniques to prepare well-defined polymers as well as one of the most notable examples of catalysis in polymer chemistry. This Perspective highlights fundamental advances in the design of ATRP reactions and catalysts, focusing on the crucial role that mechanistic studies play in understanding, rationalizing, and predicting polymerization outcomes. A critical summary of traditional ATRP systems is provided first; we then focus on the most recent developments to improve catalyst selectivity, control polymerizations via external stimuli, and employ new photochemical or dual catalytic systems with an outlook to future research directions and open challenges. 
    more » « less
  3. In Atom Transfer Radical Polymerization (ATRP), Cu 0 acts as a supplemental activator and reducing agent (SARA ATRP) by activating alkyl halides and (re)generating the Cu I activator through a comproportionation reaction, respectively. Cu 0 is also an unexplored, exciting metal that can act as a cathode in electrochemically mediated ATRP ( e ATRP). Contrary to conventional inert electrodes, a Cu cathode can trigger a dual catalyst regeneration, simultaneously driven by electrochemistry and comproportionation, if a free ligand is present in solution. The dual regeneration explored herein allowed for introducing the concept of pulsed galvanostatic electrolysis (PGE) in e ATRP. During a PGE, the process alternates between a period of constant current electrolysis and a period with no applied current in which polymerization continues via SARA ATRP. The introduction of no electrolysis periods without compromising the overall polymerization rate and control is very attractive, if large current densities are needed. Moreover, it permits a drastic charge saving, which is of unique value for a future scale-up, as electrochemistry coupled to SARA ATRP saves energy, and shortens the equipment usage. 
    more » « less
  4. Efficient transfer of halogen atoms is essential for controlling the growth of polymers in atom transfer radical polymerization (ATRP). The nature of halogens may influence the efficiency of the halogen atom transfer during the activation and deactivation processes. The effect of halogens can be associated with the C–X bond dissociation energy and the affinity of the halogens/halides to the transition metal catalyst. In this paper, we study the effect of halogens (Br vs. Cl) and reaction media in iron-catalyzed ATRP in the presence of halide anions as ligands. In Br-based initiating systems, polymerization of methacrylate monomers was well-controlled whereas Cl-based initiating systems provided limited control over the polymerization. The high affinity of the Cl atom to the iron catalyst renders it less efficient for fast deactivation of growing chains, resulting in polymers with molecular weights higher than predetermined by Δ[M]/[RX] o and with high dispersities. Conversely, Br can be exchanged with higher efficiency and hence provided good control over polymerization. Decreasing the polarity of the reaction medium improved the polymerization control. Polymerizations using ppm levels of the iron catalyst in acetonitrile (a more polar solvent) yielded polymers with larger dispersity values due to the slow rate of deactivation as opposed to the less polar solvent anisole, which afforded well-controlled polymers with dispersity <1.2. 
    more » « less
  5. Sodium pyruvate, a natural intermediate produced during cellular metabolism, is commonly used in buffer solutions and media for biochemical applications. Here we show the use of sodium pyruvate (SP) as a reducing agent in a biocompatible aqueous photoinduced azide–alkyne cycloaddition (CuAAC) reaction. This copper( i )-catalyzed 1,3-dipolar cycloaddition is triggered by SP under UV light irradiation, exhibits oxygen tolerance and temporal control, and provides a convenient alternative to current CuAAC systems, particularly for biomolecular conjugations. 
    more » « less
  6. null (Ed.)